Микропроцессорные системы

.

Даже самый совершенный микропроцессор практически бесполезен без «поддержки» других устройств, которые подразделяются на три группы.

Запоминающее устройство с произвольной выборкой. Выше мы говорили о том, что всем микропроцессорам требуется доступ к памяти со считыванием и записью, и хотя однокристальные микропроцессоры обладают такой небольшой внутренней памятью, обычно для организации памяти требуются соответствующие микросхемы (подробнее см. в гл.6).
Постоянное запоминающее устройство. Микропроцессорам необходима некоторая фиксированная память для управляющих программ и, возможно, операционных систем и интерпретаторов языков программирования высокого уровня. Такая память обеспечивается микросхемами постоянных запоминающих устройств.
Микросхемы для ввода-вывода. Чтобы выполнить любую полезную функцию, микропроцессор должен как-то взаимодействовать с внешним миром. Такие связи реализуются с помощью БИС, конфигурация которых определяется программно и которые называются программируемыми.
Микросхемы для ввода-вывода подразделяются на параллельные (одновременно передается байт) и последовательные (по единственной линии передается один бит за другим).
На рис. 5.3 показана базовая конфигурация микропроцессорной системы, содержащая центральный микропроцессор (ЦП), постоянное запоминающее устройство (ПЗУ), запоминающее устройство с произвольной выборкой (ЗУПВ) и микросхемы для ввода-вывода.

mikroprozessorniye_sistemi

Рис. 5.3. Основные компоненты микропроцессорной системы.

Отметим наличие в системе трех шин; компоненты объединяются шинами адреса, данных и управления, поэтому одним из требований к вспомогательным микросхемам оказывается наличие у них тристабильных выходов. С их помощью обеспечивается отключение микросхемы от шины, когда последняя не требуется.
Вспомогательные микросхемы, например ПЗУ или ЗУПВ, почти всегда выбираются или разрешаются низким уровнем сигнала разрешения кристалла EN или выбора (выборки) кристалла CS.
Обычно эти сигналы формируют дешифраторы адреса, на входы которых подаются сигналы с шины адреса. Дешифратор адреса как бы разделяет имеющуюся память на блоки, каждый из которых соответствует конкретной вспомогательной микросхеме. Следовательно, когда микропроцессор считывает или записывает информацию, например в ЗУПВ, дешифратор адреса обеспечивает выбор только ЗУПВ, а внутренние буферы микросхем ПЗУ и ввода-вывода удерживают их выходы в высокоимпедансном состоянии.
Распределение пространства памяти в микропроцессорной системе удобно показывать с помощью так называемой карты памяти. 8-битный микропроцессор с 16-линиями адреса может адресовать любую из 65536 (216) ячеек памяти, поэтому диапазон адресов памяти составляет от 0 до 65535 (максимальный адрес). На рис. 5.4 показана типичная карта памяти с адресами.

mikroprozessorniye_sistemi2

Рис. 5.4. Типичная карта памяти системы управления с 8-битным микропроцессором.

Комментирование и размещение ссылок запрещено.

Комментарии закрыты.